The Kendall and Mallows Kernels for Permutations

نویسندگان

  • Yunlong Jiao
  • Jean-Philippe Vert
چکیده

We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn from rankings, or learn to rank. We show how to extend these kernels to partial rankings, multivariate rankings and uncertain rankings. Examples are presented on how to formulate typical problems of learning from rankings such that they can be solved with state-of-the-art kernel algorithms. We demonstrate promising results on clustering heterogeneous rank data and high-dimensional classification problems in biomedical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On kernel methods for covariates that are rankings

Kernel methods provide an attractive framework for aggregating and learning from ranking data, and so understanding the fundamental properties of kernels over permutations is a question of broad interest. We provide a detailed analysis of the Fourier spectra of the standard Kendall and Mallows kernels, and a new class of polynomial-type kernels. We prove that the Kendall kernel has exactly two ...

متن کامل

The Weighted Kendall and High-order Kernels for Permutations

We propose new positive definite kernels for permutations. First we introduce a weighted version of the Kendall kernel, which allows to weight unequally the contributions of different item pairs in the permutations depending on their ranks. Like the Kendall kernel, we show that the weighted version is invariant to relabeling of items and can be computed efficiently in O(n ln(n)) operations, whe...

متن کامل

Sampling and Learning Mallows and Generalized Mallows Models under the Cayley distance

The Mallows and Generalized Mallows models are compact yet powerful and natural ways of representing a probability distribution over the space of permutations. In this paper, we deal with the problems of sampling and learning such distributions when the metric on permutations is the Cayley distance. We propose new methods for both operations, and their performance is shown through several exper...

متن کامل

Recursive Inversion Models for Permutations

We develop a new exponential family probabilistic model for permutations that can capture hierarchical structure and that has the Mallows and generalized Mallows models as subclasses. We describe how to do parameter estimation and propose an approach to structure search for this class of models. We provide experimental evidence that this added flexibility both improves predictive performance an...

متن کامل

Reconstructing Hidden Permutations Using the Average-Precision (AP) Correlation Statistic

We study the problem of learning probabilistic models for permutations, where the order between highly ranked items in the observed permutations is more reliable (i.e., consistent in different rankings) than the order between lower ranked items, a typical phenomena observed in many applications such as web search results and product ranking. We introduce and study a variant of the Mallows model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on pattern analysis and machine intelligence

دوره   شماره 

صفحات  -

تاریخ انتشار 2015